References#
Altunin, V. (1975). Thermophysical properties of carbon dioxide. Wellingborough, Collets.
Andersen, G., Probst, A., Murray, L., & Butler, S. (1992). An accurate pvt model for geothermal fluids as represented by h2o-nacl-co2. Mixtures, Proceedings 17th Workshop on Geothermal Reservoir Engineering.
Atkinson, P., Celati, R., Corsi, R., & Kucuk, F. (1980). Behavior of the bagnore steam/co2 geothermal reservoir, italy. Society of Petroleum Engineers Journal, 20(04), 228–238.
Aziz, K., & Settari, A. (1979). Petroleum reservoir simulation. 1979. Applied Science Publ. Ltd., London, UK.
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., … others. (2016). Petsc users manual (tech. rep. anl-95/11-revision 3.7). Argonne National Laboratory.
Battistelli, A. (2012). Improving the treatment of saline brines in ewasg for the simulation of hydrothermal systems. Proceedings of the TOUGH Symposium (pp. 192–200).
Battistelli, A., Calore, C., & Pruess, K. (1997). The simulator tough2/ewasg for modelling geothermal reservoirs with brines and non-condensible gas. Geothermics, 26(4), 437–464.
Brooks, R. H. (1965). Hydraulic properties of porous media. Colorado State University.
Carlslaw, H., & Jaeger, J. (1959). Conduction of Heat in Solids, Oxford. Oxford University Press.
Cass, A., Campbell, G., & Jones, T. (1984). Enhancement of thermal water vapor diffusion in soil. Soil Science Society of America Journal, 48(1), 25–32.
Charbeneau, R. (2007). Distribution and Recovery Model (LDRM) Volume 1: Distribution and Recovery of Petroleum Hydrocarbon Liquids in Porous Media. American Petroleum Institute API.
Coats, K. (1977). Geothermal reservoir modelling. SPE Annual Fall Technical Conference and Exhibition.
Coats, K., & Ramesh, A. (1982). Effects of grid type and difference scheme on pattern steamflood simulation results. Intercomp Resource Dev. and Engr. Inc.
Corey, A. T. (1954). The interrelation between gas and oil relative permeabilities. Producers monthly, pp. 38–41.
Cygan, R. T. (1991). The solubility of gases in NaCl brine and a critical evaluation of available data. Sandia National Laboratories Albuquerque.
De Marsily, G. (1986). Quantitative hydrogeology. Paris School of Mines, Fontainebleau.
Dean, J. A. (1999). Lange's handbook of chemistry. mcgraw-hill. New York.
Doughty, C. (2013). User's Guide for Hysteretic Capillary Pressure and Relative Permeability Functions in TOUGH2 Earth Sciences Division Lawrence Berkeley National Laboratory. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Driesner, T. (2007). The system h2o–nacl. part ii: correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 c, 1 to 5000 bar, and 0 to 1 xnacl. Geochimica et Cosmochimica Acta, 71(20), 4902–4919.
Driesner, T., & Heinrich, C. A. (2007). The system h2o–nacl. part i: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 c, 0 to 5000 bar, and 0 to 1 xnacl. Geochimica et Cosmochimica Acta, 71(20), 4880–4901.
Edlefsen, N., Anderson, A., & others. (1943). Thermodynamics of soil moisture. Hilgardia, 15(2), 31–298.
Evans, R. (1982). The atomic nucleus. Reprint edition.
Fatt, I., & Klikoff, W. A. (1959). Effect of fractional wettability on multiphase flow through porous media. Journal of Petroleum Technology, 11(10), 71–76.
Faust, C. R. (1985). Transport of immiscible fluids within and below the unsaturated zone: a numerical model. Water Resources Research, 21(4), 587–596.
Finley, N., & Reeves, M. (1982). Swift self-teaching curriculum. Report SAND81-0410, Sandia National Laboratory, Albuquerque, NM.
Garcia, J. E. (2001). Density of aqueous solutions of CO2. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Garcia, J. E. (2003). Fluid dynamics of carbon dioxide disposal into saline aquifers. University of California, Berkeley.
Ghezzehei, T., Trautz, R., Finsterle, S., Cook, P., & Ahlers, C. (2004). Modeling coupled evaporation and seepage in ventilated cavities. Vadose Zone Journal, 3(3), 806–818.
Grant, M. (1977). Permeability reduction factors at wairakei, paper present at aiche asme heat transfer conference. Am. Inst. of Chem. Eng., Am. Soc. of Mech. Eng., Salt Lake City, Utah, 1977.
Haas, J. L. (1976). Physical properties of the coexisting phases and thermochemical properties of the h2o component in boiling nacl solutions. USGS Bulletin.
Hadgu, T. (1990). A multi-purpose wellbore simulator. Geothermal Research Council. Trans., 14, 1279–1286.
Hadgu, T., Zimmerman, R. W., & Bodvarsson, G. S. (1995). Coupled reservoir-wellbore simulation of geothermal reservoir behavior. Geothermics, 24(2), 145–166.
Herbert, A., Jackson, C., & Lever, D. (1988). Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. Water Resources Research, 24(10), 1781–1795.
Himmelblau, D. (1959). Partial molar heats and entropies of solution for gases dissolved in water from the freezing to near the critical point. The Journal of Physical Chemistry, 63(11), 1803–1808.
Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1964). Molecular theory of gases and liquids. Molecular theory of gases and liquids.
IFC, A. (1967). Formulation of the thermodynamic properties of ordinary water substance. International Formulation Committee (IFC) Secretariat, Dusseldorf, Germany.
Klinkenberg, L. (1941). The permeability of porous media to liquids and gases. Am. Petrol. Inst., Drilling and Production Practice, 2, 200–213.
Lam, S., Hunsbedt, A., Kruger, P., & Pruess, K. (1988). Analysis of the stanford geothermal reservoir model experiments using the lbl reservoir simulator. Geothermics, 17(4), 595–605.
Land, C. S. (1968). Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal, 8(02), 149–156.
Lenhard, R., & Parker, J. (1987). A model for hysteretic constitutive relations governing multiphase flow: 2. permeability-saturation relations. Water Resources Research, 23(12), 2197–2206.
Leverett, M. (1941). Capillary behavior in porous solids. Transactions of the AIME, 142(01), 152–169.
Loomis, A. (1928). Solubilities of Gases in Water, in: International Critical Tables, Vol. III, E. W. Washburn.
Lorenz, S., Maric, D., & Rirschl, C. (2000). Eine analytische funktion zur bestimmung der enthalpie wässriger nacl lösungen, draft report. Institut für Sicherheitstechnologie, Köln, Germany.
Luckner, L., Van Genuchten, M. T., & Nielsen, D. (1989). A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resources Research, 25(10), 2187–2193.
Mason, E. A., & AP, M. (1983). Gas transportin porous media: the dusty-gas model. Elsevier.
Millington, R., & Quirk, J. (1961). Permeability of porous solids. Transactions of the Faraday Society, 57, 1200–1207.
Moridis, G. J. (1992). TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Moridis, G. J., & Pruess, K. (1995). Flow and transport simulations using T2CG1, a package of conjugate gradient solvers for the TOUGH2 family of codes. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Moridis, G. J., & Pruess, K. (1998). T2solv: an enhanced package of solvers for the tough2 family of reservoir simulation codes. Geothermics, 27(4), 415–444.
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513–522.
Murray, L. (1993). Toward integrating geothermal reservoir and wellbore simulation: tetrad and wellsim. Proceedings of the 15th New Zealand Geothermal Workshop 1993.
Narasimhan, T. N., & Witherspoon, P. (1978). Numerical model for saturated-unsaturated flow in deformable porous media: 3. applications. Water Resources Research, 14(6), 1017–1034.
Narasimhan, T., & Witherspoon, P. (1976). An integrated finite difference method for analyzing fluid flow in porous media. Water Resources Research, 12(1), 57–64.
O'Sullivan, M., Bodvarsson, G., Pruess, K., & Blakeley, M. (1985). Fluid and heat flow in gas-rich geothermal reservoirs. Society of Petroleum Engineers Journal, 25(02), 215–226.
Oldenburg, C. M. (2015). EOS7CA Version 1.0: TOUGH2 module for gas migration in shallow subsurface porous media systems. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Oldenburg, C. M., Moridis, G. J., Spycher, N., & Pruess, K. (2004). EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen inNatural Gas (Methane) Reservoirs. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Oldenburg, C. M., & Pruess, K. (1995). EOS7R: Radionuclide transport for TOUGH2. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pan, L., & Oldenburg, C. M. (2014). T2well—an integrated wellbore–reservoir simulator. Computers & Geosciences, 65, 46–55.
Pan, L., Spycher, N., Doughty, C., & Pruess, K. (2015). Eco2n v2. 0: a tough2 fluid property module for mixtures of water, nacl, and co2. Scientific report LBNL-6930E.
Parker, J., & Lenhard, R. (1987). A model for hysteretic constitutive relations governing multiphase flow: 1. saturation-pressure relations. Water Resources Research, 23(12), 2187–2196.
Parker, J., Lenhard, R., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23(4), 618–624.
Patterson, C. G., & Falta, R. W. (2012). A Simple History-Dependent Nonwetting-Phase Trapping Model for the TOUGH Simulators. Illinois State Geological Survey.
Peaceman, D. W. (2000). Fundamentals of numerical reservoir simulation. Elsevier.
Phillips, S. (1981). A technical databook for geothermal energy utilization. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pickens, J. F., Gillham, R. W., & Cameron, D. R. (1979). Finite-element analysis of the transport of water and solutes in title-drained soils. Journal of Hydrology, 40(3-4), 243–264.
Potter, J., & Brown, D. L. (1977). The volumetric properties of aqueous sodium chloride solutions. US Geological Survey, Bulletin.
Prausnitz, J. M., Lichtenthaler, R. N., & De Azevedo, E. G. (1998). Molecular thermodynamics of fluid-phase equilibria. Pearson Education.
Pritchett, J., Rice, M., & Riney, T. (1981). Baca geothermal demonstration project. Equation-of-state for water-carbon dioxide mixtures: Implications for Baca reservoir. Systems, Science and Software, La Jolla, CA (USA).
Pruess, K. (1991). TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pruess, K. (1983). GMINC: A mesh generator for flow simulations in fractured reservoirs. Lawrence Berkeley Lab., CA (USA).
Pruess, K. (1987). TOUGH user's guide. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pruess, K. (2004). The tough codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose zone journal, 3(3), 738–746.
Pruess, K. (2005). ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. eScholarship, University of California.
Pruess, K. (2011). ECO2M: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2, including super-and sub-critical conditions, and phase change between liquid and gaseous CO2. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pruess, K., & Battistelli, A. (2002). TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pruess, K., & Bodvarsson, F. (1983). A seven-point finite difference method for improved grid orientation performance in pattern steamfloods. SPE Reservoir Simulation Symposium.
Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., & Xu, T. (2002). Intercomparison of numerical simulation codes for geologic disposal of CO2. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Pruess, K., & Narasimhan, T. (1982). On fluid reserves and the production of superheated steam from fractured, vapor-dominated geothermal reservoirs. Journal of Geophysical Research: Solid Earth, 87(B11), 9329–9339.
Pruess, K., & Narasimhan, T. (1985). A practical method for modeling fluid and heat flow in fractured porous media. Society of Petroleum Engineers Journal, 25(01), 14–26.
Pruess, K., Oldenburg, C. M., & Moridis, G. (1999). TOUGH2 user's guide version 2. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Reeves, M., Ward, D., Johns, N., & Cranwell, R. (1986). Theory and implementation of swift ii, the sandia waste-isolation flow and transport model for fractured media. Rep. SAND83-1159. Sandia Natl Lab., Albuquerque, NM.
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318–333.
Sleijpen, G. L., & Fokkema, D. R. (1993). Bicgstab (ell) for linear equations involving unsymmetric matrices with complex spectrum. Electronic Transactions on Numerical Analysis., 1, 11–32.
Span, R., & Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 mpa. Journal of physical and chemical reference data, 25(6), 1509–1596.
Spycher, N., & Pruess, K. (2005). Co2-h2o mixtures in the geological sequestration of co2. ii. partitioning in chloride brines at 12–100 c and up to 600 bar. Geochimica et Cosmochimica Acta, 69(13), 3309–3320.
Spycher, N., Pruess, K., & Ennis-King, J. (2003). Co2-h2o mixtures in the geological sequestration of co2. i. assessment and calculation of mutual solubilities from 12 to 100 c and up to 600 bar. Geochimica et cosmochimica acta, 67(16), 3015–3031.
Spycher, N. F., & Reed, M. H. (1988). Fugacity coefficients of h2, co2, ch4, h2o and of h2o-co2-ch4 mixtures: a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling. Geochimica et Cosmochimica Acta, 52(3), 739–749.
Stone, H. (1970). Probability model for estimating three-phase relative permeability. Journal of petroleum technology, 22(02), 214–218.
Sutton, F., & McNabb, A. (1977). Boiling Curves at Broadlands Field, New Zealand. CNRS.
Tsang, Y., & Pruess, K. (1990). Further modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Tuminaro, R. S., Heroux, M., Hutchinson, S. A., & Shadid, J. N. (1999). Official aztec user's guide: version 2.1. Sandia National Laboratories, Albuquerque, NM, 87185.
Udell, K. S. (1985). Heat transfer in porous media considering phase change and capillarity—the heat pipe effect. International Journal of Heat and Mass Transfer, 28(2), 485–495.
van der Vorst, H. (1992). Bi-cgstab: a fast and smoothly converging variant of bicg in the presence of rounding errors. SIAM J. Sci. Statist. Comput, 13, 631–644.
Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892–898.
Vargaftik, N. B. (1975). Tables on the thermophysical properties of liquids and gases. Hemisphere Pub. Corp.
Vaughn, P. (1987). Analysis of permeability reduction during flow of heated, aqueous fluid through westerly granite. Coupled processes associated with nuclear waste repositories.
Verma, A., & Pruess, K. (1988). Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. Journal of Geophysical Research: Solid Earth, 93(B2), 1159–1173.
Verma, A. (1985). A study of two-phase concurrent flow of steam and water in an unconsolidated porous medium. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
Vinsome, P., & Westerveld, J. (1980). A simple method for predicting cap and base rock heat losses in'thermal reservoir simulators. Journal of Canadian Petroleum Technology, 19(03).
Walker, W. R., Sabey, J. D., & Hampton, D. R. (1981). Studies of heat transfer and water migration in soils. Final report. Colorado State Univ., Fort Collins (USA). Solar Energy Applications Lab.
Warren, J., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 3(03), 245–255.
Webb, S. W., & Ho, C. K. (1998). Review of enhanced vapor diffusion in porous media. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
Webb, S., & Ho, C. (1998). Enhanced vapor diffusion in porous media-ldrd final report. Sandia National Laboratories Report SAND98-2772, Albuquerque, NM.
Wu, Y.-S., Pruess, K., & Chen, Z. (1993). Buckley-leverett flow in composite porous media. SPE Advanced Technology Series, 1(02), 36–42.
Yanosik, J., & McCracken, T. (1979). A nine-point, finite-difference reservoir simulator for realistic prediction of adverse mobility ratio displacements. Society of Petroleum Engineers Journal, 19(04), 253–262.
Zhang, K., Wu, Y.-S., Pruess, K., & others (2008). User's guide for TOUGH2-MP-a massively parallel version of the TOUGH2 code. Ernest Orlando Lawrence Berkeley National Laboratory.
Zhang, Y., Pan, L., Pruess, K., & Finsterle, S. (2011). A time-convolution approach for modeling heat exchange between a wellbore and surrounding formation. Geothermics, 40(4), 261–266.