Stats#
- bruces.stats.poisson_process(times, rates)[source]#
Simulate a (non)-stationary Poisson process.
- Parameters:
times (sequence of scalar or sequence of datetime_like) –
Simulation time period of the Poisson process (in years if scalar):
If rates is a scalar: (start_time, end_time) corresponding to first and maximum time
If rates is an array_like: time associated to each rate value
rates (scalar or array_like) – Constant or time-dependent rate (in 1/year).
- Returns:
Simulated times.
- Return type:
sequence of scalar or sequence of datetime_like
- bruces.stats.sample_magnitude(low=0.0, high=None, b=1.0, size=1)[source]#
Draw magnitude samples following Gutenberg-Richter law.
- Parameters:
low (scalar, optional, default 0.0) – Minimum magnitude.
high (scalar or None, optional, default None) – Maximum magnitude.
b (scalar, optional, default 1.0) – b-value.
size (int, optional, default 1) – Number of samples.
- Returns:
Sampled magnitudes.
- Return type:
scalar or array_like