:orphan: Examples ======== This gallery contains different sample problems to demonstrate :mod:`toughio` pre- and post-processing capabilities. .. raw:: html
.. raw:: html
CO\ :sub:`2`\ leakage along a fault ------------------------------------ The model geometry used in this example is inspired from the paper: .. Cappa, Frédéric, and Jonny Rutqvist. "Modeling of Coupled Deformation and Permeability Evolution during Fault Reactivation Induced by Deep Underground Injection of CO2." International Journal of Greenhouse Gas Control 5, no. 2 (March 2011): 336–346. . The fault modeled in this sample problem has already been reactivated by increasing the permeability from its original value. .. raw:: html
.. raw:: html
.. only:: html .. image:: /examples/co2_leakage_along_a_fault/images/thumb/sphx_glr_1_generate_mesh_in_python_with_gmsh_thumb.png :alt: :ref:`sphx_glr_examples_co2_leakage_along_a_fault_1_generate_mesh_in_python_with_gmsh.py` .. raw:: html
Generate mesh in Python with Gmsh
.. raw:: html
.. only:: html .. image:: /examples/co2_leakage_along_a_fault/images/thumb/sphx_glr_2_generate_mesh_and_incon_files_thumb.png :alt: :ref:`sphx_glr_examples_co2_leakage_along_a_fault_2_generate_mesh_and_incon_files.py` .. raw:: html
Generate MESH and INCON files
.. raw:: html
.. only:: html .. image:: /examples/co2_leakage_along_a_fault/images/thumb/sphx_glr_3_generate_model_parameters_input_file_thumb.png :alt: :ref:`sphx_glr_examples_co2_leakage_along_a_fault_3_generate_model_parameters_input_file.py` .. raw:: html
Generate model parameters input file
.. raw:: html
.. only:: html .. image:: /examples/co2_leakage_along_a_fault/images/thumb/sphx_glr_4_import_and_visualize_simulation_outputs_in_pyvista_thumb.png :alt: :ref:`sphx_glr_examples_co2_leakage_along_a_fault_4_import_and_visualize_simulation_outputs_in_pyvista.py` .. raw:: html
Import and visualize simulation outputs in PyVista
.. raw:: html
Heat pipe in cylindrical geometry (EOS3) ---------------------------------------- Heat pipes are systems in which an efficient heat transfer takes place by means of a liquid-vapor counterflow process, with vaporization and condensation occurring at the hot and cold ends, respectively. Heat pipe processes occur naturally on a large scale (kilometers) in two-phase geothermal reservoirs, and they may be induced artificially if heat-generating nuclear waste packages are emplaced above the water table in partially saturated geologic formations. The present problem models such high-level nuclear waste emplacement in an approximate way. This problem corresponds to the sample problem No. 2 of TOUGH2 User Guide. .. raw:: html
.. raw:: html
.. only:: html .. image:: /examples/heat_pipe_in_cylindrical_geometry/images/thumb/sphx_glr_1_preprocessing_thumb.png :alt: :ref:`sphx_glr_examples_heat_pipe_in_cylindrical_geometry_1_preprocessing.py` .. raw:: html
Generate input files
.. raw:: html
.. only:: html .. image:: /examples/heat_pipe_in_cylindrical_geometry/images/thumb/sphx_glr_2_postprocessing_thumb.png :alt: :ref:`sphx_glr_examples_heat_pipe_in_cylindrical_geometry_2_postprocessing.py` .. raw:: html
Plot profiles
.. raw:: html
.. toctree:: :hidden: :includehidden: /examples//co2_leakage_along_a_fault/index.rst /examples//heat_pipe_in_cylindrical_geometry/index.rst .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_